RFCs in HTML Format


RFC 1742

                AppleTalk Management Information Base II


Table of Contents

   1. The Network Management Framework ......................    2
   2. Additions and Changes .................................    3
   2.1 New Groups ...........................................    3
   2.2 Additional Variables .................................    3
   2.2.1 AARP Additions .....................................    3
   2.2.2 ATPort Additions ...................................    3
   2.2.3 DDP Addition .......................................    3
   2.2.4 RTMP Additions .....................................    4
   2.2.5 KIP Addition .......................................    4
   2.2.6 ZIP Additions ......................................    4
   2.2.7 NBP Additions ......................................    4
   2.2.8 ATEcho Additions ...................................    4
   2.3 Deprecations .........................................    4
   2.4 Changes ..............................................    5
   3. Objects ...............................................    6



Waldbusser & Frisa                                              [Page 1]

RFC 1742 AppleTalk MIB II January 1995 3.1 Format of Definitions ................................ 6 4. Overview .............................................. 6 4.1 Structure of MIB ..................................... 7 4.2 The LocalTalk Link Access Protocol Group ............. 7 4.3 The AppleTalk Address Resolution Protocol Group ...... 7 4.4 The AppleTalk Port Group ............................. 8 4.5 The Datagram Delivery Protocol Group ................. 8 4.6 The Datagram Delivery Protocol Router Group .......... 8 4.7 The Routing Table Maintenance Protocol Group ......... 8 4.8 The Routing Table Maintenance Protocol Stub Group .... 8 4.9 The Kinetics Internet Protocol Group ................. 8 4.10 The Zone Information Protocol Router Group .......... 9 4.11 The Zone Information Protocol End Node Group ........ 9 4.12 The Name Binding Protocol Group ..................... 9 4.13 The AppleTalk Echo Protocol Group ................... 9 4.14 The AppleTalk Transaction Protocol Group ............ 9 4.15 The Printer Access Protocol Group ................... 9 4.16 The AppleTalk Session Protocol Group ................ 9 4.17 The AppleTalk Data Stream Protocol Group ............ 10 4.18 The AppleTalk Port Point to Point Group ............. 10 4.19 The Per Port Counters Group ......................... 10 4.20 Textual Conventions ................................. 10 5. Definitions ........................................... 11 6. Acknowledgmnts ........................................ 82 7. References ............................................ 83 8. Security Considerations ............................... 84 9. Authors' Addresses .................................... 84 1. The Network Management Framework The Internet-standard Network Management Framework consists of three components. They are: STD 16/RFC 1155 which defines the SMI, the mechanisms used for describing and naming objects for the purpose of management. STD 16/RFC 1212 defines a more concise description mechanism, which is wholly consistent with the SMI. RFC 1156 which defines MIB-I, the core set of managed objects for the Internet suite of protocols. STD 17/RFC 1213 defines MIB- II, an evolution of MIB-I based on implementation experience and new operational requirements. STD 15/RFC 1157 which defines the SNMP, the protocol used for network access to managed objects. Waldbusser & Frisa [Page 2]
RFC 1742 AppleTalk MIB II January 1995 The Framework permits new objects to be defined for the purpose of experimentation and evaluation. 2. Additions and Changes This MIB includes additions and changes to RFC 1243. These changes are outlined in the following sections. 2.1. New Groups The following groups are introduced in this MIB: - DDP Router - RTMP Stub - ZIP Router - ATP - PAP - ASP - ADSP - ATPortPtoP - Per Port Counters 2.2. Additional Variables Many variables, mostly counters, were added to groups that existed in RFC 1243. These variables are listed in the following sections. 2.2.1. AARP Additions aarpStatus aarpLookups aarpHits 2.2.2. ATPort Additions atportNetFrom atportZoneFrom atportInPkts atportOutPkts atportHome atportCurrentZone atportConflictPhysAddr atportZoneTable 2.2.3. DDP Addition ddpListenerTable Waldbusser & Frisa [Page 3]
RFC 1742 AppleTalk MIB II January 1995 2.2.4. RTMP Additions rtmpInDataPkts rtmpOutDataPkts rtmpInRequestPkts rtmpNextIREqualChanges rtmpNextIRLessChanges rtmpRouteDeletes rtmpRoutingTableOverflows 2.2.5. KIP Addition kipFrom 2.2.6. ZIP Additions zipNetInfoTable zipInErrors 2.2.7. NBP Additions nbpAddress nbpSocket nbpEnumerator nbpInLookUpRequests nbpInLookUpReplies nbpInBroadcastRequests nbpInForwardRequests nbpOutLookUpReplies nbpRegistrationFailures nbpInErrors 2.2.8. ATEcho Additions atechoOutRequests atechoInReplies 2.3. Deprecations The following variables have been deprecated in this version of the MIB: llapInPkts llapOutPkts llapInNoHandlers llapInErrors Waldbusser & Frisa [Page 4]
RFC 1742 AppleTalk MIB II January 1995 These llap variables were duplicated in the interfaces table of MIB- II. 2.4. Changes The IMPORTS list has been updated to reflect the current SNMP documents. New textual conventions have been defined. Hyphens have been removed from enumeration strings. Variables used as INDEXes to new tables have ACCESS not-accessible. This is because the values of the INDEX variables are contained in the object identifier for any of the other variables in the table; therefore, it does not need to be explicitly available as data. The atportNetConfig and atportZoneConfig variables have been changed from read-only to read-write. The atportZone variable has be renamed to atportZoneDefault, and its DESCRIPTION clause has been clarified. The atportType, atportStatus, and kipType variables have had more values added to their enumeration lists. The DDP group has been split into two groups; one includes variables that any AppleTalk node would implement and the other includes variables only a router would implement. The rtmpState variable now includes another enumeration, invalid(5), which is used when deleting rows. The variables rtmpRangeStart, rtmpRangeEnd, rtmpNextHop, rtmpType, rtmpPort, and rtmpHops have been changed from read-write to read- only. The ZIP Group has been renamed the ZIP End Node Group. The DESCRIPTION clause for zipZoneIndex has been clarified. The variables zipZoneName, zipZoneNetStart, and zipZoneNetEnd have been changed from read-write to read-only. The nbpIndex variable has been changed from read-only to read-write. The nbpObject, nbpType, and nbpZone variables now suggest that the agent reregister its service when any of these variables is changed. Waldbusser & Frisa [Page 5]
RFC 1742 AppleTalk MIB II January 1995 The nbpState variable includes new enumerations. 3. Objects Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. Objects in the MIB are defined using the subset of Abstract Syntax Notation One (ASN.1) [7] defined in the SMI. In particular, each object has a name, a syntax, and an encoding. The name is an object identifier, an administratively assigned name, which specifies an object type. The object type together with an object instance serves to uniquely identify a specific instantiation of the object. For human convenience, we often use a textual string, termed the OBJECT DESCRIPTOR, to also refer to the object type. The syntax of an object type defines the abstract data structure corresponding to that object type. The ASN.1 language is used for this purpose. However, the SMI [3] purposely restricts the ASN.1 constructs which may be used. These restrictions are explicitly made for simplicity. The encoding of an object type is simply how that object type is represented using the object type's syntax. Implicitly tied to the notion of an object type's syntax and encoding is how the object type is represented when being transmitted on the network. The SMI specifies the use of the basic encoding rules of ASN.1 [8], subject to the additional requirements imposed by the SNMP. 3.1. Format of Definitions Section 5 contains the specification of all object types contained in this MIB module. The object types are defined using the conventions defined in the SMI, as amended by the extensions specified in [9]. 4. Overview AppleTalk is a protocol suite which features an open peer-to-peer architecture that runs over a variety of transmission media. AppleTalk is defined in [10]. This protocol suite interoperates with the IP protocol suite through various encapsulation methods. As large AppleTalk networks are built that coexist with large IP networks, a method to manage the AppleTalk networks with SNMP becomes necessary. This MIB defines managed objects to be used for managing AppleTalk networks. Waldbusser & Frisa [Page 6]
RFC 1742 AppleTalk MIB II January 1995 4.1. Structure of MIB The objects are arranged into the following groups: - LLAP - AARP - ATPort - DDP - DDP Router - RTMP - RTMP Stub - KIP - ZIP Router - ZIP End Node - NBP - ATEcho - ATP - PAP - ASP - ADSP - ATPortPtoP - Per Port Counters These groups are the basic unit of conformance. If the semantics of a group is applicable to an implementation, then it must implement all objects in that group. For example, a managed agent must implement the KIP group if and only if it implements the KIP protocol. These groups are defined to provide a method for managed agents to know which objects they must implement. 4.2. The LocalTalk Link Access Protocol Group The LocalTalk Link Access Protocol (LLAP) is a medium-speed data-link protocol designed for low cost and plug-and-play operation. The LLAP group is designed to manage all interfaces on a managed device that use this protocol. 4.3. The AppleTalk Address Resolution Protocol Group The AppleTalk Address Resolution Protocol (AARP) is used to map between AppleTalk node addresses, used by the Datagram Delivery Protocol, and the addresses of the underlying data link layer. The AARP table allows for management of the Address Mapping Table on the managed device. Waldbusser & Frisa [Page 7]
RFC 1742 AppleTalk MIB II January 1995 4.4. The AppleTalk Port Group An AppleTalk Port is a logical connection to a network over which AppleTalk packets can be transmitted. The "network" could be a tunnel, backbone network, point-to-point link, etc, as well as a native AppleTalk network. This group allows the management of the configuration of these AppleTalk ports. 4.5. The Datagram Delivery Protocol Group The Datagram Delivery Protocol (DDP) is the network-layer protocol that is responsible for the socket-to-socket delivery of datagrams over the AppleTalk Internet. This group manages the DDP layer on the managed device. The DDP group contains statistical counters for the DDP protocol, and a table describing the DDP sockets that have protocol handlers registered. 4.6. The Datagram Delivery Protocol Router Group Some variables relevant to the Datagram Delivery Protocol (DDP) are only applicable to AppleTalk routers. These variables are included in this group. 4.7. The Routing Table Maintenance Protocol Group The Routing Table Maintenance Protocol (RTMP) is used by AppleTalk routers to create and maintain the routing tables that dictate the process of forwarding datagrams on the AppleTalk internet. The RTMP group manages the RTMP protocol as well as the routing tables generated by this protocol. 4.8. The Routing Table Maintenance Protocol Stub Group The RTMP Stub process is implemented by end nodes in order to maintain information about the routers on their networks. The variables in this group apply to both routers and end nodes. This group manages the RTMP stub process. 4.9. The Kinetics Internet Protocol Group The Kinetics Internet Protocol (KIP) is a protocol for encapsulating and routing AppleTalk datagrams over an IP internet. This name is historical. The KIP group manages the KIP routing protocol as well as the routing tables generated by this protocol. Waldbusser & Frisa [Page 8]
RFC 1742 AppleTalk MIB II January 1995 4.10. The Zone Information Protocol Router Group The Zone Information Protocol (ZIP) is used to maintain a mapping between networks and zone names to facilitate the name lookup process performed by the Name Binding Protocol. Some variables relevant to the Zone Information Protocol (ZIP) are only applicable to AppleTalk routers. These variables are included in this group. 4.11. The Zone Information Protocol End Node Group The ZIP End Node group manages the variables relevant to the Zone Information Protocol (ZIP) that are applicable to both routers and end nodes. 4.12. The Name Binding Protocol Group The Name Binding Protocol (NBP) is a transport-level protocol that is used to convert human readable service names into the numeric AppleTalk network addresses needed for communicating across the AppleTalk network. The NBP group manages this protocol and the NBP services that exist on the managed device. 4.13. The AppleTalk Echo Protocol Group The AppleTalk Echo Protocol is a transport-level protocol used to test and verify the status of the AppleTalk internet. The AtEcho group manages this protocol. 4.14. The AppleTalk Transaction Protocol Group The AppleTalk Transaction Protocol (ATP) is a transport-level protocol that is defined to support transaction based communications. The ATP group manages this protocol. 4.15. The Printer Access Protocol Group The Printer Access Protocol (PAP) is a session-level protocol that enables communications between workstations and print servers. The PAP group manages this protocol. 4.16. The AppleTalk Session Protocol Group The AppleTalk Session Protocol (ASP) is a session-level protocol that enables sequences of communications to occur. ASP uses the services of the AppleTalk Transaction Protocol (ATP), but extends these services into the session layer. The ASP group manages this protocol. Waldbusser & Frisa [Page 9]
RFC 1742 AppleTalk MIB II January 1995 4.17. The AppleTalk Data Stream Protocol Group The AppleTalk Data Stream Protocol (ADSP) is a session-level protocol that provides symmetric, connection-oriented, full-duplex communication between two sockets on the AppleTalk internet. In addition, ADSP handles flow-control and reliability. The ADSP group manages this protocol. 4.18. The AppleTalk Port Point to Point Group The AppleTalk Port Point to Point Group manages ports that have one or more associated point-to-point connections. 4.19. The Per Port Counters Group The Per Port Counters Group contains a set of counters which are deemed useful on a per port basis. 4.20. Textual Conventions New data types are introduced as textual conventions in this MIB document. These textual conventions enhance the readability of the specification and can ease comparison with other specifications if appropriate. It should be noted that the introduction of these textual conventions has no effect on either the syntax or the semantics of any managed objects. The use of this is merely an artifact of the explanatory method used. Objects defined in terms of this method are always encoded by means of the rules that define the primitive type. Hence, no changes to the SMI or the SNMP are necessary to accommodate these textual conventions which are adopted merely for the convenience of readers and writers in pursuit of the elusive goal of clear, concise, and unambiguous MIB documents. The new data types are: ATNetworkNumber ::= -- 2 octets of network -- number in network -- byte order OCTET STRING (SIZE (2)) DdpNodeAddress ::= -- 2 octets of net number -- in network byte order, -- 1 octet of node number OCTET STRING (SIZE (3)) DdpSocketAddress ::= -- 2 octets of net number -- in network byte order, -- 1 octet of node number, Waldbusser & Frisa [Page 10]
RFC 1742 AppleTalk MIB II January 1995 -- 1 octet of socket -- number (0..255) OCTET STRING (SIZE (4)) ATName ::= -- 0 to 32 octets of -- AppleTalk ASCII [10] OCTET STRING (SIZE (0..32)) 5. Definitions APPLETALK-MIB DEFINITIONS ::= BEGIN IMPORTS Counter, IpAddress, TimeTicks FROM RFC1155-SMI DisplayString, mib-2 FROM RFC1213-MIB OBJECT-TYPE FROM RFC 1212; -- This MIB module uses the extended OBJECT-TYPE macro as -- defined in RFC 1212. -- The following reference is used in this MIB: -- [Inside AppleTalk] -- This refers to Gursharan S. Sidhu, Richard F. Andrews, and -- Alan B. Oppenheimer, Inside AppleTalk, Second Edition, -- Addison Wesley, (1990). -- AppleTalk MIB appletalk OBJECT IDENTIFIER ::= { mib-2 13 } ATNetworkNumber ::= -- 2 octets of net number -- in network byte order OCTET STRING (SIZE (2)) DdpNodeAddress ::= -- 2 octets of net number -- in network byte order, -- 1 octet of node number OCTET STRING (SIZE (3)) DdpSocketAddress ::= -- 2 octets of net number -- in network byte order, -- 1 octet of node number, Waldbusser & Frisa [Page 11]
RFC 1742 AppleTalk MIB II January 1995 -- 1 octet of socket number -- (0..255) OCTET STRING (SIZE (4)) ATName ::= -- 0 to 32 octets of AppleTalk -- ASCII [Inside AppleTalk] OCTET STRING (SIZE (0..32)) llap OBJECT IDENTIFIER ::= { appletalk 1 } aarp OBJECT IDENTIFIER ::= { appletalk 2 } atport OBJECT IDENTIFIER ::= { appletalk 3 } ddp OBJECT IDENTIFIER ::= { appletalk 4 } rtmp OBJECT IDENTIFIER ::= { appletalk 5 } kip OBJECT IDENTIFIER ::= { appletalk 6 } zipRouter OBJECT IDENTIFIER ::= { appletalk 7 } nbp OBJECT IDENTIFIER ::= { appletalk 8 } atecho OBJECT IDENTIFIER ::= { appletalk 9 } atp OBJECT IDENTIFIER ::= { appletalk 10 } pap OBJECT IDENTIFIER ::= { appletalk 11 } asp OBJECT IDENTIFIER ::= { appletalk 12 } adsp OBJECT IDENTIFIER ::= { appletalk 13 } atportptop OBJECT IDENTIFIER ::= { appletalk 14 } rtmpStub OBJECT IDENTIFIER ::= { appletalk 16 } zipEndNode OBJECT IDENTIFIER ::= { appletalk 17 } perPort OBJECT IDENTIFIER ::= { appletalk 18 } -- The LLAP Group -- -- Implementation of this group is mandatory for all -- entities that implement LLAP -- -- Notes for the interfaces group -- -- When implementing the Interfaces Group of MIB-II, it is -- suggested that the following values be used for any -- LocalTalk interfaces: -- ifMtu: 600 -- ifSpeed: 230000 -- ifPhysAddress: the one octet node number for the -- particular interface -- -- Note also that LLAP control packets should not be -- included in the Interfaces Group packet or octet -- counters. Waldbusser & Frisa [Page 12]
RFC 1742 AppleTalk MIB II January 1995 llapTable OBJECT-TYPE SYNTAX SEQUENCE OF LlapEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "The list of LLAP entries." ::= { llap 1 } llapEntry OBJECT-TYPE SYNTAX LlapEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "An LLAP entry containing objects for the LocalTalk Link Access Protocol for a particular LocalTalk interface. As an example, an instance of the llapOutPkts object might be named llapOutPks.1" INDEX { llapIfIndex } ::= { llapTable 1 } LlapEntry ::= SEQUENCE { llapIfIndex INTEGER, llapInPkts Counter, llapOutPkts Counter, llapInNoHandlers Counter, llapInLengthErrors Counter, llapInErrors Counter, llapCollisions Counter, llapDefers Counter, llapNoDataErrors Counter, llapRandomCTSErrors Counter, llapFCSErrors Counter } llapIfIndex OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "The LLAP interface to which this entry pertains. The interface identified by a particular value of this index is the same interface as identified by the same value of ifIndex." ::= { llapEntry 1 } Waldbusser & Frisa [Page 13]
RFC 1742 AppleTalk MIB II January 1995 -- this object has been deprecated because it duplicates the -- sum of the MIB-II variables ifInUcastPkts and -- ifInNUcastPkts llapInPkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS deprecated DESCRIPTION "The total number of good data packets received on this LocalTalk interface." ::= { llapEntry 2 } -- this object has been deprecated because it duplicates the -- sum of the MIB-II variables ifOutUcastPkts and -- ifOutNUcastPkts llapOutPkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS deprecated DESCRIPTION "The total number of data packets transmitted on this LocalTalk interface." ::= { llapEntry 3 } -- this object has been deprecated because it duplicates the -- MIB-II variable ifInUnknownProtos llapInNoHandlers OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS deprecated DESCRIPTION "The total number of good packets received on this LocalTalk interface for which there was no protocol handler." ::= { llapEntry 4 } llapInLengthErrors OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of packets received on this LocalTalk interface whose actual length did not match the length in the header." ::= { llapEntry 5 } Waldbusser & Frisa [Page 14]
RFC 1742 AppleTalk MIB II January 1995 -- this object has been deprecated because it duplicates the -- MIB-II variable ifInErrors llapInErrors OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS deprecated DESCRIPTION "The total number of packets containing errors received on this LocalTalk interface." ::= { llapEntry 6 } llapCollisions OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of collisions assumed on this LocalTalk interface due to the lack of a lapCTS reply." ::= { llapEntry 7 } llapDefers OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of times this LocalTalk interface deferred to other packets." ::= { llapEntry 8 } llapNoDataErrors OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of times this LocalTalk interface received a lapRTS packet and expected a data packet, but did not receive any data packet." ::= { llapEntry 9 } llapRandomCTSErrors OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of times this LocalTalk interface received a lapCTS packet that was not solicited by a lapRTS packet." Waldbusser & Frisa [Page 15]
RFC 1742 AppleTalk MIB II January 1995 ::= { llapEntry 10 } llapFCSErrors OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of times this LocalTalk interface received a packet with an FCS (Frame Check Sequence) error." ::= { llapEntry 11 } -- The AARP Group -- -- Implementation of this group is mandatory for all entities -- that implement AARP aarpTable OBJECT-TYPE SYNTAX SEQUENCE OF AarpEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "The AppleTalk Address Translation Table contains an equivalence of AppleTalk Network Addresses to the link layer physical address." ::= { aarp 1 } aarpEntry OBJECT-TYPE SYNTAX AarpEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "Each entry contains one AppleTalk Network Address to physical address equivalence. As an example, an instance of the aarpPhysAddress object might be named aarpPhysAddress.1.0.80.234" INDEX { aarpIfIndex, aarpNetAddress } ::= { aarpTable 1 } AarpEntry ::= SEQUENCE { aarpIfIndex INTEGER, aarpPhysAddress OCTET STRING, aarpNetAddress DdpNodeAddress, aarpStatus INTEGER } Waldbusser & Frisa [Page 16]
RFC 1742 AppleTalk MIB II January 1995 aarpIfIndex OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "The interface on which this entry's equivalence is effective. The interface identified by a particular value of this index is the same interface as identified by the same value of ifIndex." ::= { aarpEntry 1 } aarpPhysAddress OBJECT-TYPE SYNTAX OCTET STRING ACCESS read-write STATUS mandatory DESCRIPTION "The media-dependent physical address." ::= { aarpEntry 2 } aarpNetAddress OBJECT-TYPE SYNTAX DdpNodeAddress ACCESS read-only STATUS mandatory DESCRIPTION "The AppleTalk Network Address corresponding to the media-dependent physical address." ::= { aarpEntry 3 } aarpStatus OBJECT-TYPE SYNTAX INTEGER { valid(1), invalid(2) } ACCESS read-write STATUS mandatory DESCRIPTION "The status of this AARP entry. Setting this object to the value invalid(2) has the effect of invalidating the corresponding entry in the aarpTable. That is, it effectively disassociates the mapping identified with said entry. It is an implementation-specific matter as to whether the agent removes an invalidated entry from the table. Accordingly, management stations must be prepared to receive from agents tabular information corresponding to entries not currently in use. Proper interpretation of such entries requires examination of the relevant aarpStatus object." Waldbusser & Frisa [Page 17]
RFC 1742 AppleTalk MIB II January 1995 ::= { aarpEntry 4 } aarpLookups OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of times the AARP cache for this entity was searched." ::= { aarp 2 } aarpHits OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of times an entry was searched for and found in the AARP cache for this entity." ::= { aarp 3 } -- The ATPort Group -- -- Implementation of this group is mandatory for all entities -- that implement AppleTalk ports -- -- Note that to be compliant with this group, all variables -- that have read-write access must be implemented as -- read-write. atportTable OBJECT-TYPE SYNTAX SEQUENCE OF AtportEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A list of AppleTalk ports for this entity." ::= { atport 1 } atportEntry OBJECT-TYPE SYNTAX AtportEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "The description of one of the AppleTalk ports on this entity. As an example, an instance of the atportNetFrom object might be named atportNetFrom.2" Waldbusser & Frisa [Page 18]
RFC 1742 AppleTalk MIB II January 1995 INDEX { atportIndex } ::= { atportTable 1 } AtportEntry ::= SEQUENCE { atportIndex INTEGER, atportDescr DisplayString, atportType INTEGER, atportNetStart ATNetworkNumber, atportNetEnd ATNetworkNumber, atportNetAddress DdpNodeAddress, atportStatus INTEGER, atportNetConfig INTEGER, atportZoneConfig INTEGER, atportZoneDefault ATName, atportIfIndex INTEGER, atportNetFrom DdpNodeAddress, atportZoneFrom DdpNodeAddress, atportInPkts Counter, atportOutPkts Counter, atportHome INTEGER, atportCurrentZone ATName, atportConflictPhysAddr OCTET STRING } atportIndex OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "A unique value for each AppleTalk port. Its value is between 1 and the total number of AppleTalk ports. The value for each port must remain constant at least from the re-initialization of the entity's network management system to the next re-initialization." ::= { atportEntry 1 } atportDescr OBJECT-TYPE SYNTAX DisplayString ACCESS read-write STATUS mandatory DESCRIPTION "A text string containing information about the port. This string is intended for presentation to a human; it must not contain anything but printable ASCII characters." ::= { atportEntry 2 } Waldbusser & Frisa [Page 19]
RFC 1742 AppleTalk MIB II January 1995 -- Several objects throughout the MIB key off of atportType to -- determine the format of OCTET STRING addresses of peers. -- The address formats are as follows: -- localtalk, ethertalk1, ethertalk2, tokentalk, iptalk, -- fdditalk, smdstalk, arctalk, and virtual take the -- format of DdpNodeAddress -- serialPPP: null OCTET STRING -- serialNonstandard: vendor specific -- aurp: see AURP MIB to determine format -- frameRelay: 32 bit DLCI in network byte order -- (OCTET STRING (SIZE (4))) -- x25: X121Address (see RFC 1382) -- ip: IP address (OCTET STRING (SIZE (4))) -- osi: NSAP (OCTET STRING (SIZE (3..20))) -- decnetIV: 6 bit area, 10 bit host in network byte order -- (OCTET STRING (SIZE (2))) -- arap: ??? -- nonAppleTalk3Com: based on ifType -- ipx: 32 bit network number in network byte order -- followed by datalink address of host -- arns: 32 bit ARNS header -- hdlc: DdpNodeAddress or null OCTET STRING atportType OBJECT-TYPE SYNTAX INTEGER { other(1), -- none of the following localtalk(2), ethertalk1(3), ethertalk2(4), tokentalk(5), iptalk(6), serialPPP(7), serialNonstandard(8), virtual(9), -- an internal interface fdditalk(10), arctalk(11), smdstalk(12), aurp(13), frameRelay(14), x25(15), ip(16), osi(17), decnetIV(18), arap(19), isdnInThePacketMode(20), nonAppleTalk3Com(21), ipx(22), arns(23), Waldbusser & Frisa [Page 20]
RFC 1742 AppleTalk MIB II January 1995 hdlc(24) } ACCESS read-write STATUS mandatory DESCRIPTION "The type of port, distinguished by the protocol immediately below DDP in the protocol stack." ::= { atportEntry 3 } atportNetStart OBJECT-TYPE SYNTAX ATNetworkNumber ACCESS read-write STATUS mandatory DESCRIPTION "The first AppleTalk network address in the range configured for this port. If this port is not a native AppleTalk port, this object shall have the value of two octets of zero." ::= { atportEntry 4 } atportNetEnd OBJECT-TYPE SYNTAX ATNetworkNumber ACCESS read-write STATUS mandatory DESCRIPTION "The last AppleTalk network address in the range configured for this port. If the network to which this AppleTalk port is connected is a non-extended network, or if it is not a native AppleTalk port, the value for atportNetEnd shall be two octets of zero." ::= { atportEntry 5 } atportNetAddress OBJECT-TYPE SYNTAX DdpNodeAddress ACCESS read-write STATUS mandatory DESCRIPTION "The AppleTalk network address configured for this port. In addition, this value may be used as a hint for an initial node number used during node-finding. If this port is not a native AppleTalk port, this object shall have the value of three octets of zero." ::= { atportEntry 6 } atportStatus OBJECT-TYPE SYNTAX INTEGER { routing(1), --this port is fully configured & routing Waldbusser & Frisa [Page 21]
RFC 1742 AppleTalk MIB II January 1995
RFC 1742 AppleTalk MIB II January 1995 SYNTAX INTEGER (0..65535) ACCESS read-only STATUS mandatory DESCRIPTION "The remote Connection ID of this ADSP connection. If this entry specifies an ADSP listener, this value shall be zero." ::= { adspConnEntry 4 } adspConnState OBJECT-TYPE SYNTAX INTEGER { open(1), localHalfOpen(2), remoteHalfOpen(3), listening(4), closed(5), invalid(6) } ACCESS read-write STATUS mandatory DESCRIPTION "The state of this ADSP connection. The state is open if both ends are established. If only one end is established, then the state is half-open. If neither end is established, then the state is closed. If an ADSP server is listening on a socket and is not yet connected, its state is set to listening, and the adspConnRemoteAddress, adspConnRemoteSocket, adspConnRemoteConnID, and adspConnRemoteWindowSize are all set to zero. Setting this object to the value invalid(6) has the effect of invalidating the corresponding entry in the adspConnTable. That is, it effectively disassociates the mapping identified with said entry. It is an implementation-specific matter as to whether the agent removes an invalidated entry from the table. Accordingly, management stations must be prepared to receive from agents tabular information corresponding to entries not currently in use. Proper interpretation of such entries requires examination of the relevant adspConnState object." ::= { adspConnEntry 5 } Waldbusser & Frisa [Page 71]
RFC 1742 AppleTalk MIB II January 1995 -- The ATPortPtoP Group -- -- Implementation of this group is mandatory for all entities -- that implement AppleTalk point-to-point links atportPtoPTable OBJECT-TYPE SYNTAX SEQUENCE OF AtportPtoPEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A list of AppleTalk point-to-point connections for this entity." ::= { atportptop 1 } atportPtoPEntry OBJECT-TYPE SYNTAX AtportPtoPEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "The description of one of the AppleTalk point-to-point connections on this entity. As an example, an instance of the atportPtoPRemoteAddress object might be named atportPtoPRemoteAddress.2" INDEX { atportPtoPIndex } ::= { atportPtoPTable 1 } AtportPtoPEntry ::= SEQUENCE { atportPtoPIndex INTEGER, atportPtoPProtocol OBJECT IDENTIFIER, atportPtoPRemoteName DisplayString, atportPtoPRemoteAddress OCTET STRING, atportPtoPPortIndex INTEGER, atportPtoPStatus INTEGER } atportPtoPIndex OBJECT-TYPE SYNTAX INTEGER ACCESS not-accessible STATUS mandatory DESCRIPTION "A unique value for each AppleTalk point-to-point connection. Its value is between 1 and the total number of AppleTalk point-to-point connections. The value for each connection must remain constant at least from the re-initialization of the entity's network management system to the next Waldbusser & Frisa [Page 72]
RFC 1742 AppleTalk MIB II January 1995 re-initialization." ::= { atportPtoPEntry 1 } atportPtoPProtocol OBJECT-TYPE SYNTAX OBJECT IDENTIFIER ACCESS read-write STATUS mandatory DESCRIPTION "The protocol type used over the point-to-point connection." ::= { atportPtoPEntry 2 } atportPtoPRemoteName OBJECT-TYPE SYNTAX DisplayString ACCESS read-write STATUS mandatory DESCRIPTION "A text string containing the network node name of the entity at the other end of the point-to-point link. If the name is unknown or undefined, then this string is zero length." ::= { atportPtoPEntry 3 } atportPtoPRemoteAddress OBJECT-TYPE SYNTAX OCTET STRING ACCESS read-write STATUS mandatory DESCRIPTION "The network address of the entity at the other end of the point-to-point link in network byte order. The format of this address can be determined by examinating the atportType corresponding to this entry. If the address is unknown or undefined, then this string is zero length." ::= { atportPtoPEntry 4 } atportPtoPPortIndex OBJECT-TYPE SYNTAX INTEGER ACCESS read-write STATUS mandatory DESCRIPTION "The AppleTalk port associated with this point-to-point connection. The interface identified by a particular value of this index is the same interface as identified by the same value of atportIndex." ::= { atportPtoPEntry 5 } Waldbusser & Frisa [Page 73]
RFC 1742 AppleTalk MIB II January 1995 atportPtoPStatus OBJECT-TYPE SYNTAX INTEGER { valid(1), invalid(2) } ACCESS read-write STATUS mandatory DESCRIPTION "The status of this entry in the atportPtoPTable. Setting this object to the value invalid(2) has the effect of invalidating the corresponding entry in the atportPtoPTable. That is, it effectively disassociates the mapping identified with said entry. It is an implementation-specific matter as to whether the agent removes an invalidated entry from the table. Accordingly, management stations must be prepared to receive from agents tabular information corresponding to entries not currently in use. Proper interpretation of such entries requires examinationr of the relevant atportPtoPStatus object." ::= { atportPtoPEntry 6 } atportPtoPProtoOids OBJECT IDENTIFIER ::= { atportptop 2 } -- A list of values to be used for the atportPtoPProtocol -- variable. -- When new protocols are defined, their oids may be defined -- in separate MIB documents in different branches of the tree. pToPProtoOther OBJECT IDENTIFIER ::= { atportPtoPProtoOids 1 } pToPProtoAurp OBJECT IDENTIFIER ::= { atportPtoPProtoOids 2 } pToPProtoCaymanUdp OBJECT IDENTIFIER ::= { atportPtoPProtoOids 3 } pToPProtoAtkvmsDecnetIV OBJECT IDENTIFIER ::= { atportPtoPProtoOids 4 } pToPProtoLiaisonUdp OBJECT IDENTIFIER ::= { atportPtoPProtoOids 5 } pToPProtoIpx OBJECT IDENTIFIER ::= { atportPtoPProtoOids 6 } pToPProtoShivaIp OBJECT IDENTIFIER ::= { atportPtoPProtoOids 7 } Waldbusser & Frisa [Page 74]
RFC 1742 AppleTalk MIB II January 1995 -- The Per Port Counters Group -- -- Implementation of this group is optional. perPortTable OBJECT-TYPE SYNTAX SEQUENCE OF PerPortEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "The table of per-port statistics for this entity." ::= { perPort 1 } perPortEntry OBJECT-TYPE SYNTAX PerPortEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "The statistics available for a particular port on this entity. As an example, an instance of the perPortAarpInProbes object might be named perPortAarpInProbes.2" INDEX { atportIndex } ::= { perPortTable 1 } PerPortEntry ::= SEQUENCE { perPortAarpInProbes Counter, perPortAarpOutProbes Counter, perPortAarpInReqs Counter, perPortAarpOutReqs Counter, perPortAarpInRsps Counter, perPortAarpOutRsps Counter, perPortDdpInReceives Counter, perPortDdpInLocalDatagrams Counter, perPortDdpNoProtocolHandlers Counter, perPortDdpTooShortErrors Counter, perPortDdpTooLongErrors Counter, perPortDdpChecksumErrors Counter, perPortDdpForwRequests Counter, perPortRtmpInDataPkts Counter, perPortRtmpOutDataPkts Counter, perPortRtmpInRequestPkts Counter, perPortRtmpRouteDeletes Counter, perPortZipInZipQueries Counter, perPortZipInZipReplies Counter, perPortZipInZipExtendedReplies Counter, perPortZipZoneConflictErrors Counter, perPortZipInErrors Counter, Waldbusser & Frisa [Page 75]
RFC 1742 AppleTalk MIB II January 1995 perPortNbpInLookUpRequests Counter, perPortNbpInLookUpReplies Counter, perPortNbpInBroadcastRequests Counter, perPortNbpInForwardRequests Counter, perPortNbpOutLookUpReplies Counter, perPortNbpRegistrationFailures Counter, perPortNbpInErrors Counter, perPortEchoRequests Counter, perPortEchoReplies Counter } perPortAarpInProbes OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of AARP Probe packets received by this entity on this port." ::= { perPortEntry 1 } perPortAarpOutProbes OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of AARP Probe packets sent by this entity on this port." ::= { perPortEntry 2 } perPortAarpInReqs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of AARP Request packets received by this entity on this port." ::= { perPortEntry 3 } perPortAarpOutReqs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of AARP Request packets sent by this entity on this port." ::= { perPortEntry 4 } Waldbusser & Frisa [Page 76]
RFC 1742 AppleTalk MIB II January 1995 perPortAarpInRsps OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of AARP Response packets received by this entity on this port." ::= { perPortEntry 5 } perPortAarpOutRsps OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of AARP Response packets sent by this entity on this port." ::= { perPortEntry 6 } perPortDdpInReceives OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of input datagrams received by DDP on this port, including those received in error." ::= { perPortEntry 7 } perPortDdpInLocalDatagrams OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of input DDP datagrams on this port for which this entity was their final DDP destination." ::= { perPortEntry 8 } perPortDdpNoProtocolHandlers OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of DDP datagrams addressed to this entity on this port that were addressed to an upper layer protocol for which no protocol handler existed." ::= { perPortEntry 9 } Waldbusser & Frisa [Page 77]
RFC 1742 AppleTalk MIB II January 1995 perPortDdpTooShortErrors OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of input DDP datagrams on this port dropped because the received data length was less than the data length specified in the DDP header or the received data length was less than the length of the expected DDP header." ::= { perPortEntry 10 } perPortDdpTooLongErrors OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of input DDP datagrams on this port dropped because they exceeded the maximum DDP datagram size." ::= { perPortEntry 11 } perPortDdpChecksumErrors OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of input DDP datagrams on this port for which this DDP entity was their final destination, and which were dropped because of a checksum error." ::= { perPortEntry 12 } perPortDdpForwRequests OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of input datagrams on this port for which this entity was not their final DDP destination, as a result of which an attempt was made to find a route to forward them to that final destination." ::= { perPortEntry 13 } perPortRtmpInDataPkts OBJECT-TYPE SYNTAX Counter ACCESS read-only Waldbusser & Frisa [Page 78]
RFC 1742 AppleTalk MIB II January 1995 STATUS mandatory DESCRIPTION "A count of the number of good RTMP data packets received by this entity on this port." ::= { perPortEntry 14 } perPortRtmpOutDataPkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "A count of the number of RTMP packets sent by this entity on this port." ::= { perPortEntry 15 } perPortRtmpInRequestPkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "A count of the number of good RTMP Request packets received by this entity on this port." ::= { perPortEntry 16 } perPortRtmpRouteDeletes OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "A count of the number of times RTMP deletes a route on this port because it was aged out of the table." ::= { perPortEntry 17 } perPortZipInZipQueries OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of ZIP Queries received by this entity on this port." ::= { perPortEntry 18 } perPortZipInZipReplies OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION Waldbusser & Frisa [Page 79]
RFC 1742 AppleTalk MIB II January 1995 "The number of ZIP Replies received by this entity on this port." ::= { perPortEntry 19 } perPortZipInZipExtendedReplies OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of ZIP Extended Replies received by this entity on this port." ::= { perPortEntry 20 } perPortZipZoneConflictErrors OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of times a conflict has been detected on this port between this entity's zone information and another entity's zone information." ::= { perPortEntry 21 } perPortZipInErrors OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of ZIP packets received by this entity on this port that were rejected for any error." ::= { perPortEntry 22 } perPortNbpInLookUpRequests OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of NBP LookUp Requests received on this port." ::= { perPortEntry 23 } perPortNbpInLookUpReplies OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of NBP LookUp Replies received on this Waldbusser & Frisa [Page 80]
RFC 1742 AppleTalk MIB II January 1995 port." ::= { perPortEntry 24 } perPortNbpInBroadcastRequests OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of NBP Broadcast Requests received on this port." ::= { perPortEntry 25 } perPortNbpInForwardRequests OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of NBP Forward Requests received on this port." ::= { perPortEntry 26 } perPortNbpOutLookUpReplies OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of NBP LookUp Replies sent on this port." ::= { perPortEntry 27 } perPortNbpRegistrationFailures OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of times this node experienced a failure in attempting to register an NBP entity on this port." ::= { perPortEntry 28 } perPortNbpInErrors OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of NBP packets received by this entity on this port that were rejected for any error." ::= { perPortEntry 29 } Waldbusser & Frisa [Page 81]
RFC 1742 AppleTalk MIB II January 1995 perPortEchoRequests OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of AppleTalk Echo requests received on this port." ::= { perPortEntry 30 } perPortEchoReplies OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The count of AppleTalk Echo replies received on this port." ::= { perPortEntry 31 } END 6. Acknowledgments This document was produced by the IETF AppleTalk-IP Working Group. In addition, the contribution of the following individuals is also acknowledged: Greg Bruell, Wellfleet Phil Budne, Shiva Robert Jeckell, 3Com Greg Merrell, DEC Greg Minshall, Novell, Inc. Bob Morgan, Stanford University Brad Parker, FCR Marshall T. Rose, Dover Beach Consulting Wayne Tackabury, Cayman Jonathan Wenocur, Shiva Waldbusser & Frisa [Page 82]
RFC 1742 AppleTalk MIB II January 1995 7. References [1] Cerf, V., "IAB Recommendations for the Development of Internet Network Management Standards", RFC 1052, IAB, April 1988. [2] Cerf, V., "Report of the Second Ad Hoc Network Management Review Group", RFC 1109, IAB, August 1989. [3] Rose M., and K. McCloghrie, "Structure and Identification of Management Information for TCP/IP-based internets", STD 16, RFC 1155, Performance Systems International, Hughes LAN Systems, May 1990 [4] McCloghrie K., and M. Rose, "Management Information Base for Network Management of TCP/IP-based internets", RFC 1156, Hughes LAN Systems, Performance Systems International, May 1990. [5] Case, J., Fedor, M., Schoffstall, M., and J. Davin, "Simple Network Management Protocol", STD 15, RFC 1157, SNMP Research, Performance Systems International, Performance Systems International, MIT Laboratory for Computer Science, May 1990. [6] Rose, M., Editor, "Management Information Base for Network Management of TCP/IP-based internets: MIB-II", RFC 1158, Performance Systems International, May 1990. [7] Information processing systems - Open Systems Interconnection - Specification of Abstract Syntax Notation One (ASN.1), International Organization for Standardization, International Standard 8824, December 1987. [8] Information processing systems - Open Systems Interconnection - Specification of Basic Encoding Rules for Abstract Notation One (ASN.1), International Organization for Standardization, International Standard 8825, December 1987. [9] Rose, M., and K. McCloghrie, Editors, "Concise MIB Definitions", STD 16, RFC 1212, Performance Systems International, Hughes LAN Systems, March 1991. [10] Gursharan S., Andrews, R., and A. Oppenheimer, "Inside AppleTalk", Second Edition, Addison Wesley, 1990. Waldbusser & Frisa [Page 83]
RFC 1742 AppleTalk MIB II January 1995 Security Considerations Security issues are not discussed in this memo.



Back to RFC index

 

Associates:

 



Sponsered-Sites:

Register domain name and transfer | Cheap webhosting service | Domain name registration

 

 

""