RFCs in HTML Format


RFC 1132

Network Working Group                                  L. McLaughlin III
Request for Comments: 1132                          The Wollongong Group
                                                           November 1989


A Standard for the Transmission of 802.2 Packets over IPX Networks


Status of this Memo

   This document specifies a standard method of encapsulating 802.2 [1]
   packets on networks supporting Novell's Internet Packet Exchange
   Protocol [2] (IPX).  It obsoletes earlier documents detailing the
   transmission of Internet packets over IPX networks.  It differs from
   these earlier documents in that it allows for the transmission of
   multiple network protocols over IPX and for the transmission of
   packets through IPX bridges.  Distribution of this memo is unlimited.

Introduction

   The goal of this specification is to allow compatible and
   interoperable implementations for transmitting Internet packets such
   as the Internet Protocol [3] (IP) and Address Resolution Protocol [4]
   (ARP) as well as the Connectionless-mode Network Protocol [5] (CLNP)
   over IPX networks.

   IPX is a proprietary standard developed by Novell derived from
   Xerox's Internet Datagram Protocol [6] (IDP). Defining the
   encapsulation of the IEEE 802.2 Data Link Layer Standard over IPX in
   terms of yet another 802.X Physical Layer standard allows for the
   transmission of IP Datagrams as described in RFC 1042 [7].  This
   document will focus on the implementation of that RFC over IPX
   networks.

Description

   In general, this specification allows IPX networks to be used to
   support any network protocol which can use the IEEE 802.2 Data Link
   Layer specification.

   More specifically, IPX networks may be used to support IP networks
   and subnetworks of any class.  By encapsulating IP datagrams within
   IPX datagrams and assigning IP numbers to the hosts on a IPX network,
   IP-based applications are supported on these hosts.  The addition of
   an IP Gateway capable of encapsulating IP packets within 802.IPX
   datagrams would allow those hosts on an IPX network to communicate
   with the Internet.




McLaughlin                                                      [Page 1]

RFC 1132 802.2 Packets over IPX Networks November 1989 Maximum Transmission Unit The maximum data size of a IPX datagram is 546 bytes. As the combined size of the 802.2 LLC and SNAP headers is 8 bytes, this results in a Maximum Transmission Unit (MTU) of 538 bytes. Address Mappings The mapping of Internet Protocol addresses to 802.IPX addresses is done using the Address Resolution Protocol in the same fashion as with other IEEE 802.X physical addresses. However, the length of an 802.IPX physical address is 10 bytes rather than 2 or 6. This 10 byte physical address consists of the 4 bytes of the IPX network address followed by the 6 bytes of the IPX node address. Byte Order The byte transmission order is "big-endian" [8]. Broadcast Addresses IPX packets may be broadcast by setting the IPX header Packet Type field to 0x14, the Destination Network field to the local network number, the the Destination Node field to 0xffffff, and the Immediate Address field of the IPX Event Control Block to 0xffffff. Unicast Addresses IPX packets may be unicast by setting the IPX header Packet Type field to 0x04, the Destination Network field and Destination Node field to those values found by address resolution, and the Immediate Address field of the IPX Event Control Block to the physical address of the destination node or the appropriate IPX bridge. Checksum Like most IPX applications, this specification does not use IPX checksum. Reserved values The IPX socket 0x8060 has been reserved by Novell for the implementation of this protocol. Implementation The encapsulation of Internet packets within IPX networks has proved to be quite useful. Because the IPX interface insulates knowledge of McLaughlin [Page 2]
RFC 1132 802.2 Packets over IPX Networks November 1989 the physical layer from an application, 802.2 over IPX networks work over any physical medium. A typical IP over IPX packet is shown below: -------------------- N bytes | physical header | |------------------| 30 bytes | IPX header | |------------------| 8 bytes | 802.2 header | |------------------| usually 20 bytes | IP header | |------------------| usually 20 bytes | TCP header | |------------------| up to 498 bytes | TCP data | -------------------- On workstations supporting an IPX programming interface, implementation of this specification has proved fairly straightforward. The only change which was done was to modify the existing address resolution protocol code to allow for cache entries larger than the hardware address length. This was done to allow room for the immediate address of a possible intervening IPX bridge in addition to the destination node and network addresses to be associated with a given IP address. Thus far, no implementations have been attempted on systems which do not already support an IPX programming interface (e.g., a dedicated router) though a few implementation details can be noted. First, obviously any such implementation will have to distinguish IPX packets from other packets; this process will be media dependent. Second, note that no unicast packet is ever sent from host1 to host2 without a prior broadcast packet from host2 to host1. Thus, the immediate address of a possible intervening IPX bridge between host1 and host2 can be learned from the physical header of that prior broadcast packet. Third, any such implementation will need to discover the local IPX network number from a Novell bridge or file server. The mechanisms for doing this exist but documentation for their use is not commonly available. References [1] IEEE, "IEEE Standards for Local Area Networks: Logical Link Control", IEEE, New York, 1985. [2] Novell, Inc., "Advanced NetWare V2.1 Internetwork Packet Exchange Protocol (IPX) with Asynchronous Event Scheduler (AES)", October McLaughlin [Page 3]
RFC 1132 802.2 Packets over IPX Networks November 1989 1986 [3] Postel, J., "Internet Protocol", RFC 791, USC/Information Sciences Institute, September 1981. [4] Plummer, D., "An Ethernet Address Resolution Protocol", RFC 826, November 1982. [5] ISO DIS 8473: "Information Processing Systems - Data Communications - Protocol for Providing the Connectionless-mode Network Service". [6] Xerox Corporation, "Xerox Network Systems Architecture", XNSG 068504, April 1985. [7] Postel, J., and J. Reynolds, "A Standard for the Transmission of IP Datagrams over IEEE 802 Networks", RFC 1042, USC/Information Sciences Institute, February 1988. [8] Cohen, D., "On Holy Wars and a Plea for Peace", Computer, IEEE, October 1981.



Back to RFC index

 

 



Sponsered-Sites:

 

 

""